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Effect of impermeable boundaries on diffusion-attenuated MR signal
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Abstract

The nonlinear dependence between the logarithm of the diffusion weighted signal, lnS, and the b-value, b, has often been interpreted
as a manifestation of two physically distinct compartments, resulting in a biexponential form of the signal. This model fits to experimen-
tal data, however, has failed to yield realistic compartment sizes, severely jeopardizing the use of DWI to infer structural information on
a cellular level. It has been hypothesized that the biexponential behavior can be attributed to the effect of confining boundaries that
restrict diffusion in individual physical compartments. This interpretation is based on the analysis of diffusion in the presence of imper-
meable interfaces for short diffusion times such that the layer in which diffusion is affected by the boundary is thin as compared with the
dimensions of the whole compartment. This model system is analyzed from the point of view of the cumulant expansion of the diffusion-
weighted signal that results in a Taylor expansion of lnS in powers of b. Termination of this expansion to a polynomial form provides an
excellent accuracy for small b-factors, but the series diverges for large b. The convergence of the series is studied, yielding a large range of
b-values in which the absolute error of terminating the series at the second term remains smaller than 1% relative to the signal magnitude
without diffusion weighting. With this accuracy, the signal in the studied model can be described as lnS � �A Æ bD + B Æ (bD)2, where the
parameters A and B can be expressed in terms of correlation functions of molecular velocity. Fitting of these parameters to the exact
signal is more stable than for the three parameters of the biexponential function. This description fails for large b, for which the cumulant
expansion diverges. The signal at even larger b-values is proportional to 1/b, 1/b3/2, and 1/b2 in one-, two-, and three-dimensional sys-
tems, respectively.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Numerous studies, see, e.g., [1,2] and references therein,
give evidence that the normalized diffusion-weighted signal
from a single voxel can be described as a weighted sum of
two exponential functions

S ¼ ð1� wÞ expð�bD1Þ þ w expð�bD2Þ; ð1Þ
where b is the b-value, D1 and D2 are two apparent diffu-
sion coefficients, hereafter D1 > D2 for the definiteness,
and w is the volume fraction of the slow-diffusion compart-
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ment. The signal in Eq. (1) is commonly termed the biexpo-
nential diffusion.

This form of the signal would be exact for samples con-
sisting of two compartments without exchange. The exper-
imentally observed weight of the compartment with slow
diffusion is about 20–30% [1,3]. The latter fact presents a
serious problem concerning a straightforward interpreta-
tion of these compartments as e.g., the intracellular and
the extracellular volumes with the slow and the fast diffu-
sion, respectively, since the weight of the intracellular com-
partment is typically 80% [2,4,5].

A more elaborate model with an exchange term between
compartments [6] (the Kärger–Andresko equation) results
in a very reasonable signal behavior with time dependence
of the apparent diffusion coefficients, but it fails to resolve

mailto:astrid@pet.auh.dk


224 A.F. Frøhlich et al. / Journal of Magnetic Resonance 179 (2006) 223–233
the problem of unrealistically small size of the compart-
ment with slow diffusion [6]. Latour et al. [7] obtained
the apparent diffusion coefficient for long times in tissue
consisting of densely packed cells, taking into account the
finite cell size and permeability of membranes. However,
the accuracy of the developed approximation of effective
medium remains unclear. The authors did not address the
nonlinear dependence between lnS and the b-factor.

Schwarcz et al. [8] seemingly ruled out the possibility to
interpret the biexponential diffusion in relation to the pres-
ence of an intracellular compartment. They showed that
the biexponential signal decay is observed in the cold-in-
jured mouse brain, where the membranes are disintegrated.
The same was shown to be the case for centrifuged red
blood cells, having disintegrated membranes. Indepen-
dence of the weights of two compartments on the actual
volume fraction of cells was recently demonstrated by
Ababneh and colleagues [9] by a comparison of endemic
and normal muscle tissue in a rat model.

These results are in agreement with another interpreta-
tion of the biexponential diffusion proposed by Sukstanskii
and colleagues [10–12]. They related the ‘‘hidden’’ com-
partment with slow diffusion to the layers of water adjacent
to impermeable or partially permeable membranes which
are abundant in biological tissue. This idea is based on a
simple model of diffusion with a coefficient D in a slab
restricted by two impermeable parallel boundaries. For
short times, t, such that the diffusion length, (Dt)1/2 is
shorter that the slab thickness, L, the apparent diffusion
coefficient D2 does not depend on L and D1 � D. The
weight, w, of the compartment with low diffusivity scales
as (Dt)1/2/L.

This model may serve as a basic building block in
explaining the behavior of the apparent diffusion coefficient
at short times, providing a relation between the signal and
the specific surface, r, (the surface to volume ratio) in por-
ous media [13–15]. In this case the diffusion length should
be shorter than the typical pore size. The volume with
reduced diffusivity has the weight of the order of (Dt)1/2r.

This volume fraction remains small within the validity
range of the model, and the problem of unphysiological
predictions therefore persists. Nonetheless, it is theoretical-
ly attractive by its explanation of the signal being biexpo-
nential, and by its impressive accuracy in fitting the
expression Eq. (1) to the exact signal [11].

In this paper, we advocate an alternative approach to
describe the nonlinear dependence between the logarithm
of the diffusion-weighted signal and the b-factor. We
refrain from building models of diffusion at the cellular
level, adverting instead to an ab initio property of diffu-
sion-weighted signal which is expressed by the following
expansion in powers of b:

ln S ¼ �A � bDþ B � ðbDÞ2 þ C � ðbDÞ3 þ � � � ; ð2Þ
where D is the diffusion coefficient for free diffusion. It is
reasonable to define the apparent diffusion coefficient as
the slope of �ln (S) at b = 0. According to this definition,
the coefficient A accounts for the time dependence of the
apparent diffusion coefficient, Dapp = AD. In homogeneous
media A = 1, while B, C, and all higher coefficients turn to
zero. The expansion in Eq. (2) follows from an expansion
of S in powers of the applied gradient, which is a particular
case of the cumulant expansion as discussed below. We
shall loosely apply the same term ‘‘cumulant expansion’’
to Eq. (2) in the context of the present paper.

The cumulant expansion, Eq. (2), is in fact a Taylor
expansion. Terminating this series provides for a good
approximation to the signal when bD is small. This results
in a polynomial dependence between lnS and bD, which
diverges after a certain bD-value. Including more terms
helps to increase the accuracy only for small bD. For large
values, the series diverges. In this case the signal takes a
form that cannot be approximated by the exponential of
a polynomial and the series in Eq. (2) cannot be applied.
The cross-over between the domains of small and large
bD can be termed the radius of convergence, following
the reason explained below.

To serve as a practical approximation, this radius must
be sufficiently large to incorporate measurements with typ-
ical experimental b-values. We address this issue using the
basic model of diffusion near an impermeable wall in line
with a number of previous studies, [11,12,16,17]. The possi-
ble applications and restrictions of this basic model is dis-
cussed in Section 3. We focus on the simplest
measurement sequence with narrow gradient pulses that is
used in the q-space imaging and determine the coefficients
in Eq. (2). It turns out that the cumulant expansion con-
verges for realistic b-values achievable in human scanners
and

ffiffiffiffiffi
Dt
p

� L. For example, terminating expansion Eq.
(2) at the second term for

ffiffiffiffiffi
Dt
p

¼ 0:01L results in an abso-
lute error which increases with bD and reaches 0.1% of
the signal in the absence of diffusion weighting at bD = 2.
This absolute error remains smaller than 1% for b < 8 ms/
lm2. This means that experimental data obtained with b-
factors b < 2 ms/lm2, which is typical for human scanners,
can be fitted with the two first terms of the expansion in Eq.
(2). Such a description involves only two parameters, one of
which is the apparent diffusion coefficient Dapp while the
other describes the curvature of the dependence between
lnS and b. A further advantage is that the cumulant expan-
sion of the signal enables to trace the relation between these
parameters on one hand and the pulse sequence used as well
as the structure of the media investigated, on the other. The
latter is represented by the correlation functions of molecu-
lar velocity (the cumulants) that may take a rather compli-
cated form. The cumulant expansion of the signal has been
discussed in earlier MR studies, e.g., [16,18–21]. We com-
ment on some of these works in Section 3.

The paper is organized as follows: in the next section, we
discuss shortly the cumulant expansion of the signal, that
gives rise to Eq. (2). The coefficients in Eq. (2) are calculat-
ed for the diffusion between impermeable walls in the
approximation of narrow gradient pulses. The discussion
following in Section 3 focuses on the convergence range



Fig. 1. Sequence of radio frequency and gradient pulses in a pulsed
gradient spin-echo (Stejskal–Tanner) experiment. D is the duration
between the two gradient pulses, d is the duration of each gradient pulse,
and g is the amplitude of these pulses.
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of the cumulant expansion and comparison with the biex-
ponential description of the signal. Mathematical details,
which are necessary for the self-sufficiency of the present
paper are provided in the Appendix A.

2. Theory

2.1. The cumulant expansion for the signal

The normalized NMR signal from the whole sample, S,
can be written in terms of a cumulant expansion in the con-
nected autocorrelation functions of velocity of individual
molecules

ln S ¼
X1
n¼1

in

n!

Z
unðt1 � � � tnÞF ðt1Þ � � � F ðtnÞdt1 � � � dtn. ð3Þ

Here, F (t) is the integral of the applied gradient, g, to time
t:

F ðtÞ ¼
Z t

0

gðt1Þdt1; ð4Þ

where g (t) is the time-dependent gradient of the Larmor
frequency, that is applied for the diffusion weighting. The
condition of the echo formation is F (TE) = F (0) = 0. A
refocusing pulse applied at a time point t0 is taken into ac-
count by alternating g (t) for t < t0. The functions u1 (t),
u2 (t1, t2), etc., are the connected autocorrelation functions
of the velocity of individual water molecules, termed cumu-
lants. The cumulant expansion is discussed in a number of
books, see, e.g., [22]. A simple introduction is given in [23].
Note that the quantity F (t) was denoted as G (t) in that pa-
per. Properties of cumulants, termed the connected correla-
tion functions and related quantities are discussed in detail
in [24] in the context of field theory.

The sum of all terms of odd orders in Eq. (3) is a pure
phase that disappears when the magnitude of the signal is
taken, as it is assumed in the following. The sum of terms
of all even orders describes the signal attenuation due to
the diffusion weighting. This contribution can be expressed
in terms of the b-factor using the fact that b � F2. The
result is given in Eq. (2). This series and its convergence
are studied below with the results outlined in Section 1.

2.2. Diffusion between impermeable boundaries

The effect of boundaries is negligible in the MR signal
from an infinitely large compartment. A quantification of
this effect requires the analysis of a system of finite dimen-
sions. We presently consider the signal from a slab of a
homogeneous medium, restricted by two parallel, imperme-
able planes placed at x = ±a. This system is effectively one-
dimensional and we consider only the normal component of
the gradient that senses the signal to the effect of boundaries.

The effects of two impermeable interfaces are indepen-
dent and additive as long as the diffusion length is shorter
than the slab thickness:

ffiffiffiffiffiffiffi
DD
p

� a. The accuracy of this
approximation will be characterized by a constant
a ¼
ffiffiffiffiffiffiffi
DD
p

=a� 1. We take only the leading term in a into
account, which is equivalent to neglecting any cross-effects
between the two boundaries.

The pulsed-gradient spin-echo NMR experiment, Fig. 1,
directly measures the Fourier transform of the diffusion
propagator, w, in the limit of narrow pulses, d� D:

Sðq; tÞ ¼
Z

expðiqðx� x0ÞÞwðx; x0; tÞdx
dx0

2a
; ð5Þ

where q = gd and the b-factor of this sequence is b = q2D.
The sample thickness, L = 2a, which should be replaced
by the volume in three dimensions, provides for a normal-
ization S = 1 for g = 0.

The propagator, w, satisfies the equation

owðx; x0; tÞ
ot

¼ D
o2

ox2
wðx; x0; tÞ ð6Þ

with the initial condition

wðx; x0; 0Þ ¼ dðx� x0Þ ð7Þ
and the boundary conditions

w0jx¼�a ¼ 0; ð8Þ
where the prime denotes the derivative with respect to x.
The function w (x,x0, t) is also termed the Green’s function
of the diffusion equation.

For the free diffusion, the solution to Eq. (6) is a Gauss-
ian function

wðx; x0; tÞ ¼
1

ð4pDtÞ1=2
exp �ðx� x0Þ2

4Dt

 !
. ð9Þ

In the next section, we calculate the effect of boundaries
using two approaches. We use the method of mirror images
and the eigenfunction expansion of the diffusion propaga-
tor. The former results in very simple calculations while
the latter is more universal and commonly used in literature.

2.2.1. Signal attenuation at small b-values

2.2.1.1. Method of mirror images. The Green’s function of
Eq. (6) in one spatial dimension takes the following form
in the vicinity of one boundary:



Fig. 2. The exact signal shown as a function of bD for a = 0.02 (black line)
and a = 0.3 (grey line), along with the cumulant expansion, Eq. (2). The
solid lines are the exact signals, Eq. (A.4), the dotted lines the
corresponding second-order cumulant expansions, Eq. (2), and the dashed
line is the third-order cumulant expansion.
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wðy;y0;DÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

4pDD
p exp �ðy�y0Þ

2

4DD

 !
þexp �ðyþy0Þ

2

4DD

 !" #
.

ð10Þ
Here, the distance y, is measured from the position of the
boundary: y = x + a, y0 = x0 + a near the left plane and
y = x � a, y0 = x0 � a near the right one. The expression
is valid when y,y0� a.

The signal in the presence of one boundary can be found
by using Eq. (5), with y and y0 varying between 0 and 2a.
The integration is performed by making a change of vari-
ables: u = y � y0 and v = (y + y0)/2. The integral of the
first term in Eq. (10) is calculated by first performing the
integration over v, while the integral of the second term
in Eq. (10) is calculated by first performing the integration
over u. Only terms of the orders of a0 and a�1 are taken
into account in the calculations. The resulting surface con-
tribution, which is the part of the signal proportional to
a�1, is multiplied by a factor of two, to account for the
two boundaries present in a slab. This results in

S ¼ S0 þ S1 þ Oða2Þ; ð11Þ
where S0 and S1 are given by

S0 ¼ expð�bDÞ ð12Þ

S1 ¼
ffiffiffiffiffiffiffi
DD
p

a
� 1ffiffiffi

p
p þ erfið

ffiffiffiffiffiffi
bD
p

Þ expð�bDÞ
ffiffiffiffiffiffi
bD
p

þ 1

2
ffiffiffiffiffiffi
bD
p

� �� �
.

ð13Þ

Here, erfi (x) is the error function of an imaginary argu-
ment: erfi (x) = erf (ix)/i. O (a2) stands for corrections of
the order a2 and higher.

Eq. (13) is a particular case of a more general expres-
sion for the signal found by Sukstanskii et al. [12] for the
case of impermeable walls. The general result was
obtained in a different way. It should be noted that the
slab thickness in [12] was a rather than 2a as it is
assumed in the present work. Note a misprint in equa-
tion (A.1) in [12].

The surface contribution, S1, in Eq. (13) can be expand-
ed in a power series in bD giving rise to the following
expression for the total signal:

S ¼ expð�bDÞ þ
ffiffiffiffiffiffiffi
DD
p

a

X1
l¼0

ðlþ 1Þð�1ÞlðbDÞlþ1

Cð5=2þ lÞ þ Oða2Þ. ð14Þ

The first three terms of this expansion take the form

SðbÞ ¼ 1� AS � bDþ BS � ðbDÞ2 þ CS � ðbDÞ3; ð15Þ
where the coefficients to the first order in a are

AS ¼ þ1� 4

3
ffiffiffi
p
p

ffiffiffiffiffiffiffi
DD
p

a
; ð16Þ

BS ¼
1

2
� 16

15
ffiffiffi
p
p

ffiffiffiffiffiffiffi
DD
p

a
; ð17Þ

CS ¼ �
1

6
þ 16

35
ffiffiffi
p
p

ffiffiffiffiffiffiffi
DD
p

a
. ð18Þ
Here, the numerical terms come from the expansion of S0,
Eq. (12), and all terms originated from S1, Eq. (13), inherit
the factor a.

Taking the logarithm of Eq. (14) and re-expanding the
series yields finally the signal in the form given in Eq. (2).
The expansion coefficients take the following form up to
first order in a:

A ¼ 1� 4

3
ffiffiffi
p
p

ffiffiffiffiffiffiffi
DD
p

a
; B ¼ 4

15
ffiffiffi
p
p

ffiffiffiffiffiffiffi
DD
p

a
;

C ¼ 2

35
ffiffiffi
p
p

ffiffiffiffiffiffiffi
DD
p

a
. ð19Þ

The case of bulk fluid corresponds to the neglect of bound-
ary effects, which implies a = 0. In this case the series termi-
nates at the first term with A = 1, according to the Gaussian
nature of diffusion. The deviation of A from unity for finite
a describes the known effect of impermeable surfaces. The
present result for A agrees with the result of [13], when not-
ing that 1/a should be replaced with the surface-to-volume
ratio discussed in [13] and an additional factor 1/3 comes
from the angular averaging of the gradient in three dimen-
sions. The high accuracy of Eq. (2) for small a is illustrated
in Fig. 2. The error made by terminating the cumulant
expansion is discussed in more detail in Section 3.

2.2.1.2. Expansion in eigenfunctions. It is instructive to con-
sider another way of solving the problem above. The signal
can be found by using the expansion of the diffusion prop-
agator in eigenfunctions of the operator Do2/ox2. This
method is not so straightforward as above, but it has the
advantage of being extendable to semipermeable bound-
aries with surface relaxation.

The expansion reads

wðx; x0;DÞ ¼
X1
n¼0

unðxÞu�nðxÞ expð�knDÞ; ð20Þ
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where un are the eigenfunctions satisfying the boundary
conditions as given in Eq. (8) and kn are the corresponding
eigenvalues. Calculations that lead to Eq. (14) and Eqs.
(11) and (13) are presented in Appendix A.

2.2.2. Signal attenuation at large b-values
The signal at large b-values can be found from Eq. (13)

in which the error function takes its asymptotic form

erfið
ffiffiffiffiffiffi
bD
p

Þ ¼ 1ffiffiffiffiffiffiffiffiffi
pbD
p expðþbDÞ 1þ 1

2b

� �
. ð21Þ

This results in the following form of the signal:

SðbDÞ �
ffiffiffiffiffiffiffi
DD
p ffiffiffi

p
p

a
� 1

bD
. ð22Þ

The same expression can be obtained via the eigenfunction
expansion by neglecting nn and fn in the denominator of
Eq. (A.4) and evaluating the series in Eq. (A.4) in its inte-
gral limit.

The total signal in Eq. (22) is dominated by the contri-
bution of the molecules that experience the confining effect
of the boundary. They are less mobile than in the bulk and
their contribution to the signal is less suppressed. The
dependence on the parameters in Eq. (22) can be recovered
by estimating the signal using Eq. (5). The main contribu-
tion to the signal comes from a region adjacent to the
boundary with the thickness of the order of 1/q. In this
region, the Green’s function is of the order of 1=

ffiffiffiffiffiffiffi
DD
p

.
Accordingly, the double integration results in
S � ðq2

ffiffiffiffiffiffiffi
DD
p

Þ�1 in agreement with Eq. (22). The relative
smallness of the bulk contribution defines the applicability
range of Eq. (22) as

expð�bDÞ �
ffiffiffiffiffiffiffi
DD
p

a
� 1

bD
. ð23Þ

The signal behavior at large b is illustrated in Fig. 3 for
three different values of a. At bD � 10 the asymptotic form
sets up. Such a strong diffusion weighting is achievable in
Fig. 3. The signal, Eq. (11), as a function of bD, for large b-factors for
three different values of a (solid lines). Dotted lines show the asymptotic
form, Eq. (22), for bD	 1.
animal scanners and spectrometers, see for example [25],
in which b-values up to 15 ms/lm2 are reported.

The above result can be easily generalized for three-di-
mensional systems. The applied gradient, if not orthogonal
to the boundary, results in the conventional signal attenu-
ation due to the diffusion in the lateral directions. In three
dimensions Eq. (22) is replaced with

S3dðbDÞ ¼
Z

SðbDcos2hÞ expð�bDsin2hÞ sin h
2

dh. ð24Þ

Here, S is defined in Eq. (22), in which 1/a is replaced with
r/2. h is the tilt angle of the gradient and the integration
performs the averaging over all possible orientations in a
statistically isotropic sample. The integral at large bD is
dominated by the saddle points at h = 0 and h = p with
the result

S3dðbDÞ �
ffiffiffiffiffiffiffi
DD
p

4
ffiffiffi
p
p
ðbDÞ2

� r. ð25Þ

Analogously, the signal from two-dimensional systems
takes the form

S2dðbDÞ �
ffiffiffiffiffiffiffi
DD
p

2pðbDÞ3=2
� r. ð26Þ
3. Discussion

We have advocated the cumulant expansion for the dif-
fusion-weighted signal, Eq. (2), and obtained all terms in
the expansion of the signal in powers of the b-value for
the pulsed-gradient spin-echo experiment in the approxi-
mation of narrow pulses, Eq. (14). The re-expansion of
the logarithm of the signal can be easily extended to give
any reasonably large number of terms beyond the first
three ones given in Eq. (19). In this section, we discuss
the convergence of the expansions obtained, their relation
to the biexponential model, give a brief overview of similar
approaches in the current literature and finally discuss lim-
itations of the model used.

3.1. On the convergence range of the cumulant expansion

A theorem of complex analysis states that an arbitrary
smooth analytical function can be expanded in a Taylor
series in a vicinity of a given point in the complex plane
of its argument. In our case the argument is bD and the
expansion point is bD = 0. The Taylor expansion converg-
es in the complex plane of bD in a circle with a radius
restricted by the nearest singularity or branching point of
the original function. This radius, which is termed the radi-
us of convergence, can take values from zero to infinity
depending on the specific function.

Consider first an illustrative example of a function
y = 2�exp(�x) which converges for any x. We can re-write
y as exp(ln (y)) and then expand the logarithm,
ln (2�exp(�x)), to simulate the cumulant expansion. In



Fig. 5. 1/|S| (from Eq. (11)) in the complex plane of bD, for a = 0.02. 1/|S|
is symmetric around the real axis, due to the property S (bD)* = S (bD*),
where the star denotes the complex conjugation. The signal is a real
positive decreasing function of bD on the real axis. It has a zero point at
�6.362 ± 3.856i (found numerically), which can be seen as the divergence
in 1/|S|. This restricts the convergence radius in the expansion of Eq. (2) toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:3622 þ 3:8562
p

¼ 7:44.
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this case the convergence radius is limited by the singularity
of y at x = �ln (2). In particular, the series diverges for
x > ln(2) � 0.69, although the function has no singularity
at positive arguments. The difference in the radius of con-
vergence results in two different types of behavior of the
terminated series as illustrated in Figs. 4A and B. For the
infinite radius of convergence, Fig. 4A, accounting for
more terms in the Taylor expansion results in a larger inter-
val in which the function is well approximated by the termi-
nated series. In contrast, the terminated series can never
approximate the function beyond the radius of conver-
gence as it is illustrated by Fig. 4B.

The same two types of convergence are met in the diffu-
sion-weighted signal, Eqs. (2) and (14) as illustrated in
Fig. 4C. The expansion of the signal in velocity correlators,
Eq. (14), converges for all values of bD due to the presence
of the Gamma function in the denominator. In contrast,
the cumulant expansion, Eq. (2), shows a pattern that is
peculiar to a finite radius of convergence, due to the re-ex-
pansion of lnS.

This radius can be estimated by searching for zeros of
S (bD) given in Eq. (11) in the complex plane of bD. The
result of such a search, which was performed numerically,
is shown in Fig. 5. For a = 0.02 the signal has a zero point
at bD = �6.362 ± 3.856i, giving a convergence radius of
(bD)c = 7.44. This value depends on a (Fig. 6). The quanti-
ty (bD)c is an approximation to the radius of convergence
of the cumulant expansion in the first order in a. Taking
the logarithm of the signal produces an infinite number
of terms of higher orders in a. These terms are neglected
in Eq. (2) which is equivalent to a subtraction of a function
of a and bD that is proportional to a2. The data shown in
Fig. 4 agree with the above estimate for a = 0.02.

The behavior of the signal for all small values of a is
illustrated in Fig. 6. The cumulant expansion has a larger
applicability range for small a. The cross-over to the
regime of large b takes place at logarithmically large bD

as a fi 0.
Fig. 4. Two examples of convergence to compare with the signal, S, shown as a
line). Black lines represent its terminated Taylor expansion including from two
text) with the same meaning of the lines. (C) The exact diffusion-weighted sig
expanded signal, Eq. (14), to increasing order in bD. Note a similarity to (A). T
to increasing order in bD. Note a similarity to (B).
3.2. Relation to the biexponential model

According to Sukstanskii and colleagues [11], the model
of biexponential diffusion, Eq. (1), describes the signal
from a slab restricted by two impermeable walls extremely
well (v2 < 10�9). This model inspires the interpretation of
real experimental data as the effect of restricted diffusion.
We argue, however, that the conclusion about the biexpo-
nential nature of diffusion in this basic model cannot be
drawn if the signal is determined with a finite accuracy of
the order of the typical noise level in in vivo experiments.
function of bD. (A) Taylor expansion of the function y = 2�exp(�x) (grey
to ten terms. (B) Taylor expansion of the function exp(ln(2�exp(�x))) (see
nal, Eq. (A.4) (grey line) for a = 0.02. The black dashed curves show the
he black solid curves represent the terminated cumulant expansion, Eq. (2),



Fig. 6. Regions in the parameter plane (a,bD) that are relevant for the
convergence of the cumulant expansion. The first two terms of the
cumulant expansion, Eq. (2), provide a good relative accuracy in the
region to the left of the solid line. The line is selected to show the point for
which this approximation deviates two-fold from the exact signal, Eq.
(A.4). The line shape is well described by the formula a = 5.34e�0.9bD for
bD > 4. The points connected with the dashed line show the estimation for
the radius of convergence of the cumulant expansion as discussed in the
text. Accounting for more terms in the expansion can help to increase the
accuracy in the region between the two lines. The signal for large a
(a > 0.3) is not concave any more [11] and the present model is not
applicable.

Fig. 7. The absolute value of the error shown as function of bD for
a = 0.02. The error is defined as the absolute difference between the exact
signal, obtained by numerical summation of the series in Eq. (A.4), and
the approximated signal. The second and third order of the cumulant form
are shown by the black solid curve and the black dotted curve,
respectively. The grey solid curve corresponds to the biexponential fit
performed by Sukstanskii et al. [11], which should only be evaluated in the
interval 0 < bD < 2, in which the fitting was performed.

Table 1
Comparison of the coefficients AS, BS, and CS in the signal in Eq. (14) with
numerical calculations of [11]

a = 0.02 a = 0.3

AS Present study �0.9849 �0.7743
Sukstanskii et al. [11] �0.9847 �0.7863

BS Present study 0.4880 0.3195
Sukstanskii et al. [11] 0.4876 0.3246

CS Present study �0.1615 �0.0893
Sukstanskii et al. [11] �0.1613 �0.0908
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This can be understood as follows: any smooth function
can be represented by the coefficients of its Taylor expan-
sion. Knowledge of all coefficients is equivalent to the
knowledge of the original function, while incomplete deter-
mination of the coefficients causes an error in the sum of
the series. In the context of the present discussion, the biex-
ponential function, Eq. (1), can be cast into the generic
form of Eq. (2). Recognition of this function as biexponen-
tial would require either a determination of a sufficiently
large number of coefficient in its Taylor expansion or a
good accuracy of the biexponential approximation beyond
the convergence range of the series.

Fig. 7 shows that this is not feasible for a typical noise
level of the order of 1% relative to the signal at b = 0.
The absolute error in the signal is addressed in view of
the noise which is additive in real measurements. This
error, of both the fitted biexponential function and its
cumulant expansion terminated at the second term,
remains smaller than 1% in a large range of b-values. This
implies that the coefficients A and B in Eq. (2) are the only
practically relevant parameters, while the rest of the Taylor
expansion for lnS (b) is irrelevant. For a = 0.02, reduction
of noise down to the level of 10�3 would be marginally suf-
ficient for more terms to become significant, as shown in
Fig. 7. The relative error of the second-order cumulant
expansion increases with bD. Still, it remains small in a rea-
sonably large range of parameters, for example it is smaller
than 10�2 for bD < 3 (for a = 0.02). Note that the cumulant
expansion that accounts for the coefficients A and B in Eq.
(2) results in an increasing signal for b > A/2B which gives
b > 160 for a = 0.02 and b > 8 for a = 0.3. These values are
far beyond the radius of convergence. The cumulant expan-
sion is more accurate in the limit of small b-values in agree-
ment with its exact mathematical origin.

We thus conclude that the biexponential function, Eq.
(1), is superfluous to describe the diffusion-weighted signal
from a rectangular compartment. There are only two
parameters, A and B in Eq. (2) that can be reliably deter-
mined from experimental data acquired with realistic accu-
racy. This relevant part of the signal takes the following
form in terms of the original parameters of the biexponen-
tial function, Eq. (1):

ln S � �b�Dþ 1
2
b2 w1ðD1 � �DÞ2 þ w2ðD2 � �DÞ2
h i

. ð27Þ

Here, w2 = 1�w1, �D is the mean value of the diffusion coef-
ficient, �D ¼ w1D1 þ w2D2 and the term in the brackets can
be recognized as the variance of the diffusion coefficient be-
tween the two pools. This representation enables a compar-
ison of our analytical results with the results of fitting the
biexponential model to the signal calculated numerically
which was performed in [11]. The data from [11] were cast
into the form Eq. (2) by use of Eq. (27). The results present-
ed in Table 1 indicate a good agreement between the
studies.



Table 2
Parameters found from a biexponential fit to the exact result, Eq. (14), represented with 40 points in the interval 0 < bD < 2 for a = 0.02

Biexponential fit Cumulant expansion

D1 D2 w v2 A B

0.9933 0.3030 0.0121 4.3701 · 10�11 0.9849 0.0028
0.9915 0.2110 0.0086 1.0569 · 10�8 0.9847 0.0026
0.9900 0.1012 0.0060 2.7892 · 10�8 0.9846 0.0024

The three data lines correspond to three different sets of initial parameters. The parameters of the biexponential fit show large variations in spite of the high
accuracy of fitting. The coefficients of the cumulant expansion are more stable as discussed in the text.

Fig. 8. The signal (solid curve) as a function of bD for a = 0.02 along with
the biexponential fit (dotted curve), Eq. (1) The fitted parameters are
D1 = 0.9656, D2 = 0.0819, and w = 0.0029.
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In general, fitting the three parameters of the biexponen-
tial function to data, which are described by only two
parameters, may cause large fluctuations in the fitting
results which would be driven by the noise or the initial
guess. Such fluctuations would be correlated to preserve
the two combination of parameters in Eq. (27) which are
actually fixed by the data. This effect is illustrated in Table
2. The noise-free theoretical curve, Eq. (11), was represent-
ed with 40 points in the interval 0 < bD < 2 for a = 0.02,
and fitted with the biexponential function with three differ-
ent sets of initial parameters. The parameters of the cumu-
lant expansion, Eq. (2), were calculated according to Eq.
(27) from the results of fitting. In all cases, very accurate
fits were obtained with a standard deviation between the
data and the fitted function smaller than 2.6 · 10�5. In
spite of this impressive accuracy, the small diffusion con-
stant and the corresponding weight vary three- and two-
fold, respectively. In contrast, the coefficients of the cumu-
lant expansion are stable. Similar results were obtained
with Gaussian noise added prior to the fitting (data not
shown).

3.3. Overview of the diffusion weighted signal

It is a well-known fact that diffusion-weighted signal for
short times from samples with impermeable interfaces is
corrected proportionally to the specific surface of the sam-
ple [13,26]. According to the present results, the total signal
as a function of the b-factor shows two different regimes
which will be referred to as the small and large b-values
(Fig. 8). The cross-over between them is related to the con-
vergence radius of the cumulant expansion.

The signal for small b-values decreases exponentially as
a function of bD. Its form is described by the cumulant
expansion, Eq. (2). Both this expansion and the fitting with
the bi-exponential function, Eq. (1), provide for a good
accuracy.

The cumulant expansion is not applicable in the cross-
over region and for large b-factors the signal is proportion-
al to an inverse power of bD, Eq. (22) and Eqs. (25) and
(26). Note that the biexponential function is sufficiently
flexible to be fitted to the signal in a wide range of b-values
as illustrated in Fig. 8. The systematic deviation from the
exact result reminds about its incorrect functional form
in the domain of large b-factors.
3.4. Cumulant expansion in MRI literature

The cumulant expansion is well known in physics and
mathematics and has to some extend been reflected in the
MRI literature. Several groups have used related
approaches for modelling the diffusion-weighted signal.

The representation of the diffusion-weighted signal as an
exponential function of a second-order polynomial, which
is equivalent to Eq. (2) terminated at the second term,
was proposed by Yablonskiy and coauthors [27]. It was
demonstrated that this function fits well in vivo data. This
form of the signal was derived from an assumption that the
signal in the form exp(�bD) gets weighted with a probabil-
ity distribution of the diffusion coefficient, P (D). A narrow
Gaussian distribution resulted in the second-order polyno-
mial in the exponent. This approach can be generalized by
noting that the whole series in Eq. (2) can be obtained as
the cumulant expansion for arbitrary P (D). The drawback
of this model is the unclear meaning of the distribution
P (D), which was thought of as a function of time for any
given spin packet [27]. From our point of view, this descrip-
tion can be applied self-consistently to the only model that
describes a medium consisting of many large homogeneous
compartments. In this case P (D) would describe the distri-
bution of compartments. Apparently, such a model can
hardly be applied to the cellular structure of brain tissue
with the typical cell size of the order of 10 lm.
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Mitra and colleagues [16] studied the cumulant expan-
sion, and found the quadratic term in b-value in the limit
of long times for three different geometries. The authors
concluded that this term can be a very sensitive probe of
microgeometry.

Jensen et al. [20] discussed the deviation of diffusion
from a Gaussian distribution and derived the correspond-
ing corrections to lnS for the case of narrow gradient puls-
es. Their main equation corresponds to Eq. (2) terminated
at the second term and generalized for three dimensions.
The authors have shown that the second-order term in b

is rather sensitive to the anisotropy of diffusion.
Cohen and Assaf [25] compared the q-space analysis

with the biexponential fit. They found a much larger error
in the parameters of their biexponential fit than in the
height and the width of the displacement distribution,
which was calculated straightforwardly (Fig. 20 in the ori-
ginal paper). This can be explained by the redundancy of
the biexponential function, Eq. (1), as discussed above.

In [18] Stepis̆nik studied the second-order term of the
cumulant expansion which is proportional to bD. He dis-
cussed the possibility to measure the velocity autocorrela-
tion function by using oscillating gradients. This idea was
realized later by Schachter, Does, and colleagues [28,29].
In 2004, Stepis̆nik [21] studied the cumulant expansion
for large a-values, and concluded for this case that high-
er-order terms bring small corrections to the Gaussian
phase approximation, which is equivalent to keeping only
the first term in the cumulant expansion, Eq. (3).

3.5. Restrictions of the model

The model considered in this study provides an illustra-
tion to the discussion of the general properties of the diffu-
sion-weighted signal. It becomes adequate in the limit of
short diffusion times such that the diffusion length

ffiffiffiffiffi
Dt
p

is
much smaller than the characteristic size of the mesoscopic
structure in the medium. The curvature of realistic bound-
aries contributes a subleading term at short times [14].

Sukstanskii and colleagues [12] discussed the applicabil-
ity of the present model to the diffusion measurements in
the human brain. Cells in the brain have a size distribution
above �1 lm. The diffusion time should be as short as
�1 ms to fulfill the criterium a�1 when D � 1 lm2/ms is
used as the lower limit on the ‘‘bulk’’ diffusion coefficient.
Such small diffusion times are marginally reachable (see
e.g., [29]). Latour et al. [7] achieved a diffusion time of
3 ms and successfully found the surface-to-volume ratio
of packed red blood cells by extrapolation to zero time.
The typical diffusion times used in MR are significantly
longer, of the order of �20 ms. Accordingly, the effects
considered here are relevant for cellular structure larger
than 15 lm. This minimal size is smaller for the diffusion
of some brain metabolites that have a much smaller diffu-
sion constant.

In the present study, the boundaries were assumed to be
impermeable for diffusing molecules. The effect of finite
permeability of cellular membranes was discussed in
[11,12]. It can be estimated in terms of a characteristic time,
D/j2, where j is the permeability. The membrane can be
well approximated as impermeable as long as this time is
longer than the diffusion time. For a typical permeability
of 10�2 � 10�1lm/ms [12], this requirement is less restric-
tive than the requirement of a� 1.

The effect of surface relaxation was not taken into
account in the present model. It results in terms which
are proportional to time [14] at t fi 0. Such terms are
smaller than the leading one of the order of

ffiffiffiffiffi
Dt
p

which is
in the focus of the present study.

In the present work, we assumed a negligible duration of
the gradient pulses. This assumption can hardly be met in
in vivo measurement with strong diffusion weighting. On
the other hand, the signal dependence on the applied gradi-
ent includes two successive integrations, Eqs. (3) and (4).
This suggests that the signal should not depend significant-
ly on the details of the gradient pulse shape.

4. Conclusion

The present study focuses on diffusion near confining
boundaries. This model underlies a widely shared interpre-
tation of complex diffusion in the human brain as being
biexponential. An alternative description is provided by
the cumulant expansion of the logarithm of the diffusion-
weighted signal that takes the form of a power series in
bD. We find explicitly the first terms of this expansion in
the narrow pulse approximation and show that the series
converges in the range of practically important b-values.
In this range, it can be approximated by its first two or
three terms which provide for a very good approximation
to the exact result similar to the biexponential description.

We show that the limitation of realistic experimental
accuracy helps to resolve the problem of choice between
one of these two ways of mathematical description of the
signal. Only the two first terms of the Taylor expansion
of the biexponential function can be reliably determined
from experimental data at a noise level of around 1%.
Keeping only these terms is identical to using the cumulant
expansion. The rest of the Taylor series for the biexponen-
tial function is irrelevant. The biexponential function with
its three parameters is thus superfluous for fitting such
experimental data. This results in large correlated fluctua-
tions in the fitted parameters which are driven by noise
and the initial guess. Further advantage of the cumulant
expansion is the better understanding of its relation to
the microscopic structure.

The signal at large b-values cannot be described by the
cumulant expansion that diverges for large bD. The signal
in this domain is proportional to an inverse power of bD.
The biexponential function can still be used to fit the data,
although a systematic deviation from the exact result is
manifest.

The system considered in this study cannot serve as a
realistic model for diffusion measurements in the brain. It
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rather helps to insight in those properties of the signal that
follow from basic physics and are thus inherent to a large
class of systems. It remains a challenging unresolved prob-
lem to find the morphological correlates of diffusion-
weighted signal in biological tissue.
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Appendix A

The Green’s function is conveniently expressed in terms
of eigenfunctions of the operator Do2/ox2, Eq. (6)

wðx; x0;DÞ ¼
X1
n¼0

unðxÞu�nðxÞ expð�knDÞ; ðA:1Þ

where the eigenfunctions un (x) form an orthogonal com-
plete setZ

V
dxunðxÞumðxÞ ¼ dn;m;

X1
n¼0

unðxÞunðx0Þ ¼ dðx� x0Þ

ðA:2Þ
and obey the boundary conditions given in Eq. (8).

For diffusion between the parallel planes, the expansion
in eigenfunctions for the Green’s function takes the form

wðx; x0;DÞ ¼
1

2a
þ 1

a

X1
n¼1

exp � n2
nDD
a2

� �
cos

nnx
a

� �
cos

nnx0

a

� �

þ 1

a

X1
n¼0

exp � f2
nDD
a2

� �
sin

fnx
a

� �
sin

fnx0

a

� �
;

ðA:3Þ

where the eigenvalues nn and fn are determined by
sin (nn) = 0 and cos (fn) = 0. In the case of free diffusion,
a fi1, the series in Eq. (A.3) can be approximated by
integrals and w takes the well-known Gaussian shape,
Eq. (9). By performing the Fourier transform of Eq.
(A.3), the signal can be written as [17]

Sðq;DÞ ¼ 2
X1
n¼0

exp � n2
nDD
a2

� �
qað Þ2sin2ðqaÞ

qað Þ2 � n2
n

� �2
� sin2ðqaÞ
ðqaÞ2

þ 2
X1
n¼0

exp � f2
nDD
a2

� �
qað Þ2cos2ðqaÞ

qað Þ2 � f2
n

� �2
. ðA:4Þ

This expression can be expanded in powers of q, by using
the following formal series:
1

qað Þ2 � n2
n

h i2
¼
X1
l¼0

ðlþ 1ÞðqaÞ2l

n4þ2l
n

. ðA:5Þ

The summation over n in the first series in Eq. (A.4) can
be performed as follows. A series of this type can be
evaluated as an integral to the first order in a provided
a weak dependence on n. To this end we subtract and
add the first l + 1 terms of the Taylor expansion of the
exponential function:

X1
n¼0

1

n4þ2l
n

exp � n2
nDD
a2

� �
¼
X1
n¼0

1

n4þ2l
n

exp � n2
nDD
a2

� ��

�
Xlþ1

p¼0

ð�1Þp

p!

n2
nDD
a2

� �p
#

þ
X1
n¼0

1

n4þ2l
n

Xlþ1

p¼0

ð�1Þp

p!

n2
nDD
a2

� �p

ðA:6Þ
and analogously for the second series in Eq. (A.4). The sig-
nal can be written from now on as S = S1 + S0, where S1 is
the part of the signal in Eq. (A.4) coming from the first sum
in Eq. (A.6). S0 is the part of the signal in Eq. (A.4) coming
from the second sum in Eq. (A.6) and including the term
�sin2(qa)/(qa)2 in Eq. (A.4).

Evaluation of S1 as an integral is performed as follows:

X1
n¼0

1

n4þ2l
n

exp � n2
nDD
a2

� �
�
Xlþ1

p¼0

ð�1Þp

p!

n2
nDD
a2

� �p
" #

; ðA:7Þ

¼ ðDDÞlþ3=2

pa2lþ3

Z 1

0

1

x4þ2l
exp �x2

	 

�
Xlþ1

p¼0

ð�1Þp

p!
x2p

" #
dx;

ðA:8Þ

¼ ðDDÞlþ3=2

2pa2lþ3
Cð�3=2� lÞ; ðA:9Þ

¼ ðDDÞlþ3=2

2a2lþ3

ð�1Þl

Cð5=2þ lÞ ; ðA:10Þ

where C (z) is the gamma function. S1 takes finally the form

S1 ¼
b
ffiffiffiffiffiffiffi
DD
p

a

X1
l¼0

ðlþ 1Þð�bDÞl

Cð5=2þ lÞ . ðA:11Þ

This series reproduces the surface contribution in the signal
in the form given in Eq. (13).

The part of the signal coming from the added Taylor
series, S0, consist of formal series which can be summed
up exactly:

S0¼2sin2 qað Þ
X1
l¼0

ðlþ1ÞðqaÞ2lþ2
X1
n¼0

1

n4þ2l
n



Xlþ1

p¼0

ð�1Þp

p!

n2
nDD
a2

� �p

� sin2ðqaÞ
ðqaÞ2

ðA:12Þ

þ2cos2 qað Þ
X1
l¼0

ðlþ1ÞðqaÞ2lþ2
X1
n¼0

1

f4þ2l
n

Xlþ1

p¼0

ð�1Þp

p!

f2
nDD
a2

� �p

;

¼expð�bDÞþOða2Þ. ðA:13Þ
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To sum up the series in Eq. (A.12) it is convenient to
change the summation index: l = l0 + p, so that
p = 0, . . .,1 and l0 = �1, . . .,1. S0 obtained in this way
reproduces the first term in Eq. (12).
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